2型糖尿病(T2DM)的早期诊断对于及时的治疗干预措施和生活方式改变至关重要。随着医学成像数据在许多患者群体中变得更广泛可用,我们试图研究是否可以在表格学习分类器模型中利用图像衍生的表型数据来预测T2DM的发病率,而无需使用侵入性血液实验室测量。我们表明,使用图像衍生表型的神经网络和决策树模型都可以预测患者T2DM状态的召回评分高达87.6%。我们还提出了与“ Syntha1c编码器”相同的结构的新颖使用,这些结构能够输出模仿血液血红蛋白A1C经验实验室测量值的可解释值。最后,我们证明了T2DM风险预测模型对输入矢量成分中小扰动的敏感性可用于预测从以前看不见的患者人群中取样的协变量的性能。
translated by 谷歌翻译
深度卷积神经网络(DCNN)已成为生物对象识别的最新计算模型。他们的杰出成功帮助了Vision Science打破了新的基础。因此,最近的努力已经开始将这一成就转移到生物面部识别领域。在这方面,可以通过比较面部选择性生物学区域和神经元与人造层和单位进行比较来研究面部检测。同样,可以通过体内和硅面空间表示的比较来检查面部识别。在这个迷你审查中,我们总结了第一批研究。我们认为DCNN是有用的模型,它遵循生物面部识别的一般分层组织。在两个聚光灯下,我们强调了这些模型的独特科学贡献。首先,DCNN中有关面部检测的研究表明,基本面部选择性会通过前馈过程自动出现。其次,DCNN中有关面部识别的研究表明,这项挑战需要经验和其他生成机制。综上所述,由于这种新颖的计算方法能够密切控制倾向(即体系结构)和经验(即培训数据),因此这也可以为关于生物面部识别的底物的长期辩论提供详细介绍。
translated by 谷歌翻译
机器人完成任务的能力在很大程度上取决于其物理设计。但是,确定最佳的物理设计及其相应的控制策略本质上是具有挑战性的。选择链接的数量,类型以及如何在组合设计空间中结果产生的自由,以及对该空间中任何设计的评估都需要得出其最佳控制器。在这项工作中,我们提出了N-LIMB,这是一种在大量形态上优化机器人设计和控制的有效方法。我们框架的核心是一种通用设计条件的控制策略,能够控制各种设计集。这项政策通过允许在设计中转移经验并降低评估新设计的成本,从而大大提高了我们方法的样本效率。我们训练这项政策,以最大程度地提高预期回报,而在设计的分布中,该政策同时更新为普遍政策下的高性能设计。通过这种方式,我们的方法收敛于设计分布,围绕高性能设计和控制器的控制器有效地进行了微调。我们在各种地形的一系列运动任务上展示了我们方法的潜力,并展示了发现小说和高性能的设计控制对。
translated by 谷歌翻译
深度卷积神经网络(DCNN)最初是受生物视觉原理的启发,已演变为对象识别的最佳当前计算模型,因此表明在整个与神经图像和神经时间序列数据的比较中,都表明了与腹视觉途径的强大结构和功能并行性。随着深度学习的最新进展似乎降低了这种相似性,计算神经科学面临挑战,以逆转工程,以获得有用模型的生物学合理性。虽然先前的研究表明,生物学启发的体系结构能够扩大模型的人类风格,但在本研究中,我们研究了一种纯粹的数据驱动方法。我们使用人类的眼睛跟踪数据来直接修改训练示例,从而指导模型在自然图像中对象识别期间的视觉注意力朝着或远离人类固定的焦点。我们通过GARGCAM显着性图比较和验证不同的操纵类型(即标准,类人类和非人类的注意力)与人类参与者的眼动数据。我们的结果表明,与人类相比,所提出的指导焦点操作的作用是在负方向上的意图,而非人类样模型则集中在明显不同的图像部分上。观察到的效果是高度类别特异性的,它通过动画和面部的存在增强,仅在完成前馈处理后才开发,并表明对面部检测产生了强烈的影响。然而,使用这种方法,没有发现人类的类似性。讨论了公开视觉注意力在DCNN中的可能应用,并讨论了对面部检测理论的进一步影响。
translated by 谷歌翻译
我们介绍了一种通用方法,通过推断推出了不变性,用于提高具有未知感知变化的部署环境中代理的测试时间性能。通过推动的不变性,不能产生不变性,而不是产生不变性的视觉功能,而是将部署时间转变为无监督的学习问题。这是通过部署一个直接算法的实践中实现的,该算法试图将潜在特征的分布与代理的先前经验匹配,而无需依赖于配对数据。虽然简单,但我们表明这个想法导致各种适应情景的令人惊讶的改进,无需访问部署时间奖励,包括相机姿势和照明条件的更改。结果提出了具有基于图像的图像的机器人环境挑战挑战性的骚扰控制套件。
translated by 谷歌翻译
相机校准与机器人和计算机视觉算法是一体的,用于从可视输入流中推断场景的几何属性。在实践中,校准是一种艰苦的程序,需要专门的数据收集和仔细调整。每当相机变化的参数时,必须重复该过程,这可能是移动机器人和自主车辆的频繁发生。相反,自我监督的深度和自我运动估计方法可以通过推断优化视图综合目标的每个帧投影模型来绕过明确的校准。在本文中,我们扩展了这种方法,以明确校准野外Raw视频的各种相机。我们提出了一种学习算法,使用高效的一般相机模型来回归每序列校准参数。我们的程序通过子像素再分注意误差实现自校准结果,优于基于其他学习的方法。我们在各种相机几何形状上验证了我们的方法,包括透视,鱼眼和昏迷。最后,我们表明我们的方法导致深度估计下游任务的改进,在EUROC数据集中实现了最先进的计算效率,而不是当代方法。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
感知,规划,估算和控制的当代方法允许机器人在不确定,非结构化环境中的远程代理中稳健运行。此进度现在创造了机器人不仅在隔离,而且在我们的复杂环境中运行的机器人。意识到这个机会需要一种高效且灵活的媒介,人类可以与协作机器人沟通。自然语言提供了一种这样的媒体,通过对自然语言理解的统计方法的重大进展,现在能够解释各种自由形式命令。然而,大多数当代方法需要机器人环境的详细,现有的空间语义地图,这些环境模拟了话语可能引用的可能引用的空间。因此,当机器人部署在新的,先前未知或部分观察到的环境中时,这些方法发生故障,特别是当环境的心理模型在人类运营商和机器人之间不同时。本文提供了一种新的学习框架的全面描述,允许现场和服务机器人解释并正确执行先验未知,非结构化环境中的自然语言指令。对于我们的方法而不是我们的语言作为“传感器” - 在话语中隐含的“传感器” - 推断的空间,拓扑和语义信息,然后利用这些信息来学习在潜在环境模型上的分布。我们将此分布纳入概率,语言接地模型中,并在机器人的动作空间的象征性表示中推断出分布。我们使用模仿学习来确定对环境和行为分布的原因的信仰空间政策。我们通过各种导航和移动操纵实验评估我们的框架。
translated by 谷歌翻译
Dexterous操作是机器人中的一个具有挑战性和重要问题。虽然数据驱动方法是一个有希望的方法,但由于流行方法的样本效率低,当前基准测试需要模拟或广泛的工程支持。我们为Trifinger系统提供基准,这是一个开源机器人平台,用于灵巧操纵和2020年真正的机器人挑战的重点。在挑战中取得成功的基准方法可以一般被描述为结构性政策,因为它们结合了经典机器人和现代政策优化的元素。这种诱导偏差的包含促进样品效率,可解释性,可靠性和高性能。该基准测试的关键方面是验证跨模拟和实际系统的基线,对每个解决方案的核心特征进行彻底消融研究,以及作为操纵基准的挑战的回顾性分析。本工作的代码和演示视频可以在我们的网站上找到(https://sites.google.com/view/benchmark-rrc)。
translated by 谷歌翻译
自我监督的代表学习使对比学习的进步推动了显着的跨利赛,这旨在学习嵌入附近积极投入对的转变,同时推动负对的对。虽然可以可靠地生成正对(例如,作为相同图像的不同视图),但是难以准确地建立负对对,定义为来自不同图像的样本,而不管它们的语义内容或视觉功能如何。对比学习中的一个基本问题正在减轻假底片的影响。对比假否定引起了两个代表学习的关键问题:丢弃语义信息和缓慢的收敛。在本文中,我们提出了识别错误否定的新方法,以及减轻其效果的两种策略,即虚假的消极消除和吸引力,同时系统地执行严格的评估,详细阐述了这个问题。我们的方法表现出对基于对比学习的方法的一致性改进。没有标签,我们在想象中的1000个语义课程中识别出具有40%的精度,并且在使用1%标签的FINETUNING时,在先前最先进的最先进的前1个精度的绝对提高5.8%的绝对提高。我们的代码可在https://github.com/gogle-research/fnc上获得。
translated by 谷歌翻译